ФИЗ+7 (495) 232-32-16

ОРГ+7 (495) 780-48-44

icon +7 (495) 780-48-49

Основы работы с большими данными (Data Science)

Описание курса

Предлагаем Вам погрузиться в Data Science, чтобы познакомиться с Big Data! На нашем курсе Вы соприкоснетесь с самой популярной в IT концепцией.

Компании, которые игнорируют Big Data, отстают от конкурентов и теряют прибыль. Тем временем компании, работающие с большими данными, показывают высокие результаты в клиентском сервисе, операционной эффективности и риск-менеджменте.

Компаний, внедряющих Big Data, становится все больше. Растет спрос на специалистов, которые могут комплексно работать с большими массивами данных: анализировать, обрабатывать и визуализировать их. Аналитик больших данных, решая бизнес-задачи, развивается одновременно в IT и бизнесе.

Наш курс «Основы работы с большими данными: Data Science Orientation» позволит Вам «подружиться» с Big Data (большими данными).

В курсе рассматриваются вопросы:

  • источники информации: структурированные и неструктурированные;
  • основные характеристики больших данных и способы их анализа;
  • элементы классификации данных и машинного обучения;
  • основы статистического анализа, построение регрессионных зависимостей;
  • визуализация «больших данных»;
  • обзор классов задач, решаемых инструментами машинного обучения и ИИ: распознавание образов, звуков, текста, прогностика, анализ соцсетей;
  • обзор математических инструментов решения: нейронные сети, графы, нечеткие и К-значные логики;
  • обзор прикладных инструментов: AWS, Azure AI, machine learning c демонстрацией применения;
  • специальности в области «больших данных» и формирование команд: аналитики данных, «ученые по данным», программисты по «большим данным», менеджеры по «большим данным» (CDO).
  • методы реорганизации работы компании при применении анализа «больших данных».

Предлагаемый курс позволит управляющему персоналу, менеджерам, разработчикам, другим сотрудникам, вовлеченным в аналитическую деятельность своей компании, ознакомиться с современными инструментами сбора, подготовки, обработки и анализа больших объемов разнородных данных.

По итогам курса Вы будете уверенно ориентироваться в мире «больших данных», машинного обучения и сможете организовывать команды для работы с «большими данными» и определите направление своего профессионального развития в этой области.

Спешите записаться на наш курс «Основы работы с большими данными: Data Science Orientation», чтобы освоить Big Data и вывести свою компанию в лидеры!

Вы научитесь

  • определять источники сбора информации и формировать требования к ним;
  • применять стандартный CRISP-DM процесс для Вашей организации;
  • подбирать команду для работы с большими данными (Big Data);
  • выбирать инструментарий для практической работы;
  • применять специализированные инструменты Excel – «Пакет анализа данных» и «Тренды»;
  • применять «дерево решений»;
  • определять подходящие инструменты и методы для решения основных классов задач машинного обучения и взаимодействовать с разработчиками;
  • использовать методы классификации данных для машинного обучения;
  • подбирать выборки разработки, тестовую и обучающую для достижения наилучших результатов анализа информации;
  • организовывать реорганизацию работы компании для применения управления на основе больших данных.

Вы будете знать

  • понимать концепцию больших данных (Big Data);
  • знать типовые задачи, для решения которых применяется машинное обучение: анализ трендов, социальных сетей; распознавание графических, видео- и аудио-образов, текста; прогностика действий (на примере покупок);
  • владеть базовыми математическими понятиями;
  • понимать основные методы обработки и анализа данных: регрессия, нейронные сети; графы, К-значные логики;
  • знать основные современные инструменты анализа данных;
  • понимать принципы организации и структуру команд по работе с бигдата.

Специалисты, обладающие этими знаниями и навыками, в настоящее время крайне востребованы.

Большинство выпускников наших курсов делают успешную карьеру и пользуются уважением работодателей.

Предварительная подготовка

Требуемая подготовка: Успешное окончание курса Microsoft Excel 2019/2016. Уровень 1. Работа с Excel 2019/2016 или эквивалентная подготовка.

 

Для определения уровня предварительной подготовки рекомендуем Вам пройти бесплатное тестирование.

Программа курса

Модуль 1 . Область применения больших данных. Типовые задачи.

  • Цели курса
  • Определение основных понятий
  • История науки о данных
  • Выгоды от работы с большими данными
  • Типовые задачи: прогноз продаж, производства, спроса. Анализ поведения. Распознавание образов. Экспертные системы.

Модуль 2 . Сбор и подготовка исходных данных. Методика CRISP-DM

  • С чего начать. Межотраслевая стандартная методика работы с данными CRISP-DM
  • Описательное и ассоциативное исследование исходных данных
  • Сегментирование и очистка данных (slice and dice). Примеры инструментов Excel
  • Визуализация данных в Excel. Как использовать сводные таблицы и диаграммы
  • Практическая работа. Сегментировать и очистить тестовый набор данных.

Модуль 3 . Основы математической статистики. ANOVA. Надстройка Excel «Пакет анализа»

  • Описательная статистика
  • Среднее, наиболее вероятное, медиана
  • Дисперсия, стандартное отклонение, стандартная ошибка
  • Виды распределений
  • Пакет анализа данных Excel
  • Обзор других прикладных средств работы с данными (R, Python, Octave, MathLab, специализированные БД).
  • Практическая работа. Определить статистические характеристики выборки данных.

Модуль 4 . Задача прогноза продаж. Понятие машинного обучения. Корреляция. Регрессионный анализ

  • Постановка задачи оценки взаимосвязи между различными факторами и построение прогноза
  • Корреляция. Коэффициент Пирсона
  • Критерий Стьюдента (T-анализ)
  • Основы машинного обучения
  • Регрессионный анализ
  • Критерий Фишера
  • Построение и анализ трендов в Excel
  • Практическая работа. Определить наличие корреляции и регрессионную зависимость между двумя выборками данных. Построить тренд.

Модуль 5 . Задачи классификации и распознавания образов, видео, речи, текста. Понятие нейронных сетей. Примеры применения.

  • Задача сегментации дискретных данных на примере задач распознавания (графика, речь, текст)
  • Нейронные сети как инструмент решения задач классификации
  • Демонстрация на примерах Azure, AWS
  • Задачи классификации данных в социальных сетях и поиска оптимального решения (маршрута)
  • Графы как инструмент решения задач на социальных графах и прогнозирования поведения
  • Дерево решений
  • Разбиение на выборки (обучающую, тестовую, проверочную)
  • Анализ ошибок обучения. Базис и отклонения. Ручная корректировка
  • Практическая работа: провести классификацию набора данных и его разбиение на сегменты.

Модуль 6 . Задача исследования социальных сетей. Задача прогнозирования поведения пользователя. Социальные и направленные графы. Деревья решений. Примеры применения

  • Задача классификации данных в социальных сетях
  • Графы как инструмент решения задач на социальных графах и прогнозирования поведения
  • Разбиение на выборки (обучающую, тестовую, проверочную)
  • Анализ ошибок обучения. Базис и отклонения. Ручная корректировка

Модуль 7 . Продвинутые инструменты: глубокое машинное обучение, искусственный интеллект, нечеткие множества

  • Понятие Deep Machine Learning
  • Многофакторный бизнес анализ на примере нечетких логик

Модуль 8 . Профориентация по специальностям в Data Science. Выводы и рекомендации по построению и организации работы команды

  • Роли специалистов по DS: аналитик данных, ученый по данным, программист, цифровой директор
  • Требования к компетенциям и взаимодействию сотрудников в области аналитики данных
  • Состав и требования к проектной команде для DS
  • Подготовка компании к применению «бигдата»

Программа курса предусматривает самостоятельную работу (выполнение домашних заданий) и контроль знаний (тестирование).



Стоимость обучения

Обучение в группе

245 880 руб./группа
(количество слушателей в группе не более 1 человека)

Документы об окончании

В зависимости от программы обучения выдаются следующие документы:

Удостоверение *

Свидетельство

* Для получения удостоверения вам необходимо предоставить копию диплома о высшем или среднем профессиональном образовании.

Сертификаты международного образца выводятся после окончания курса в личном кабинете слушателя.

envelope

Спасибо! Вам на e-mail отправлено письмо со ссылкой для подтверждения

Если письмо не пришло, поищите его в папке со спамом или повторите подписку

email-checked.png

Вы подписались на рассылку

Наш сайт использует файлы cookie
Наша задача – сделать Ваше обучение успешным. Specialist.ru использует файлы cookie, чтобы гарантировать максимальное удобство пользователям, предоставляя им персонализированную информацию и запоминая их предпочтения. Продолжая пользоваться сайтом, Вы подтверждаете своё согласие на использование файлов cookie. Подробнее...